Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 351
Filtrar
1.
J Biol Chem ; 299(4): 104608, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36924943

RESUMO

Rapid and accurate translation is essential in all organisms to produce properly folded and functional proteins. mRNA codons that define the protein-coding sequences are decoded by tRNAs on the ribosome in the aminoacyl (A) binding site. The mRNA codon and the tRNA anticodon interaction is extensively monitored by the ribosome to ensure accuracy in tRNA selection. While other polymerases that synthesize DNA and RNA can correct for misincorporations, the ribosome is unable to correct mistakes. Instead, when a misincorporation occurs, the mismatched tRNA-mRNA pair moves to the peptidyl (P) site and, from this location, causes a reduction in the fidelity at the A site, triggering post-peptidyl transfer quality control. This reduced fidelity allows for additional incorrect tRNAs to be accepted and for release factor 2 (RF2) to recognize sense codons, leading to hydrolysis of the aberrant peptide. Here, we present crystal structures of the ribosome containing a tRNALys in the P site with a U•U mismatch with the mRNA codon. We find that when the mismatch occurs in the second position of the P-site codon-anticodon interaction, the first nucleotide of the A-site codon flips from the mRNA path to engage highly conserved 16S rRNA nucleotide A1493 in the decoding center. We propose that this mRNA nucleotide mispositioning leads to reduced fidelity at the A site. Further, this state may provide an opportunity for RF2 to initiate premature termination before erroneous nascent chains disrupt the cellular proteome.


Assuntos
Anticódon , Códon , RNA Ribossômico , Ribossomos , Anticódon/química , Anticódon/genética , Anticódon/metabolismo , Códon/química , Códon/genética , Códon/metabolismo , Conformação de Ácido Nucleico , Nucleotídeos/química , Nucleotídeos/metabolismo , Biossíntese de Proteínas , Ribossomos/química , Ribossomos/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo , RNA de Transferência/química , RNA de Transferência/metabolismo , Pareamento Incorreto de Bases , Modelos Moleculares , RNA Ribossômico/química , RNA Ribossômico/metabolismo
2.
Nature ; 613(7945): 751-758, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36631608

RESUMO

Cognate tRNAs deliver specific amino acids to translating ribosomes according to the standard genetic code, and three codons with no cognate tRNAs serve as stop codons. Some protists have reassigned all stop codons as sense codons, neglecting this fundamental principle1-4. Here we analyse the in-frame stop codons in 7,259 predicted protein-coding genes of a previously undescribed trypanosomatid, Blastocrithidia nonstop. We reveal that in this species in-frame stop codons are underrepresented in genes expressed at high levels and that UAA serves as the only termination codon. Whereas new tRNAsGlu fully cognate to UAG and UAA evolved to reassign these stop codons, the UGA reassignment followed a different path through shortening the anticodon stem of tRNATrpCCA from five to four base pairs (bp). The canonical 5-bp tRNATrp recognizes UGG as dictated by the genetic code, whereas its shortened 4-bp variant incorporates tryptophan also into in-frame UGA. Mimicking this evolutionary twist by engineering both variants from B. nonstop, Trypanosoma brucei and Saccharomyces cerevisiae and expressing them in the last two species, we recorded a significantly higher readthrough for all 4-bp variants. Furthermore, a gene encoding B. nonstop release factor 1 acquired a mutation that specifically restricts UGA recognition, robustly potentiating the UGA reassignment. Virtually the same strategy has been adopted by the ciliate Condylostoma magnum. Hence, we describe a previously unknown, universal mechanism that has been exploited in unrelated eukaryotes with reassigned stop codons.


Assuntos
Anticódon , Códon de Terminação , Células Eucarióticas , Código Genético , Mutação , Fatores de Terminação de Peptídeos , RNA de Transferência , Anticódon/química , Anticódon/genética , Anticódon/metabolismo , Cilióforos/genética , Códon de Terminação/genética , Código Genético/genética , Fatores de Terminação de Peptídeos/genética , Fatores de Terminação de Peptídeos/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , RNA de Transferência de Triptofano/genética , Saccharomyces cerevisiae/genética , RNA de Transferência de Ácido Glutâmico/genética , Trypanosoma brucei brucei/genética
3.
Nat Commun ; 13(1): 209, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017528

RESUMO

Modified nucleotides in tRNAs are important determinants of folding, structure and function. Here we identify METTL8 as a mitochondrial matrix protein and active RNA methyltransferase responsible for installing m3C32 in the human mitochondrial (mt-)tRNAThr and mt-tRNASer(UCN). METTL8 crosslinks to the anticodon stem loop (ASL) of many mt-tRNAs in cells, raising the question of how methylation target specificity is achieved. Dissection of mt-tRNA recognition elements revealed U34G35 and t6A37/(ms2)i6A37, present concomitantly only in the ASLs of the two substrate mt-tRNAs, as key determinants for METTL8-mediated methylation of C32. Several lines of evidence demonstrate the influence of U34, G35, and the m3C32 and t6A37/(ms2)i6A37 modifications in mt-tRNAThr/Ser(UCN) on the structure of these mt-tRNAs. Although mt-tRNAThr/Ser(UCN) lacking METTL8-mediated m3C32 are efficiently aminoacylated and associate with mitochondrial ribosomes, mitochondrial translation is mildly impaired by lack of METTL8. Together these results define the cellular targets of METTL8 and shed new light on the role of m3C32 within mt-tRNAs.


Assuntos
Anticódon/química , Metiltransferases/genética , Mitocôndrias/genética , RNA Mitocondrial/química , RNA de Transferência de Serina/química , RNA de Transferência de Treonina/química , Anticódon/metabolismo , Pareamento de Bases , Citosina/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Metilação , Metiltransferases/metabolismo , Mitocôndrias/metabolismo , Conformação de Ácido Nucleico , Ligação Proteica , Biossíntese de Proteínas , RNA Mitocondrial/genética , RNA Mitocondrial/metabolismo , RNA de Transferência de Serina/genética , RNA de Transferência de Serina/metabolismo , RNA de Transferência de Treonina/genética , RNA de Transferência de Treonina/metabolismo , Transdução de Sinais
4.
Nat Struct Mol Biol ; 28(9): 713-723, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34489609

RESUMO

Human mitochondrial transcripts contain messenger and ribosomal RNAs flanked by transfer RNAs (tRNAs), which are excised by mitochondrial RNase (mtRNase) P and Z to liberate all RNA species. In contrast to nuclear or bacterial RNase P, mtRNase P is not a ribozyme but comprises three protein subunits that carry out RNA cleavage and methylation by unknown mechanisms. Here, we present the cryo-EM structure of human mtRNase P bound to precursor tRNA, which reveals a unique mechanism of substrate recognition and processing. Subunits TRMT10C and SDR5C1 form a subcomplex that binds conserved mitochondrial tRNA elements, including the anticodon loop, and positions the tRNA for methylation. The endonuclease PRORP is recruited and activated through interactions with its PPR and nuclease domains to ensure precise pre-tRNA cleavage. The structure provides the molecular basis for the first step of RNA processing in human mitochondria.


Assuntos
3-Hidroxiacil-CoA Desidrogenases/química , Metiltransferases/química , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , Ribonuclease P/química , 3-Hidroxiacil-CoA Desidrogenases/metabolismo , Anticódon/química , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Microscopia Crioeletrônica , Humanos , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Mitocôndrias/enzimologia , Modelos Moleculares , Mutação de Sentido Incorreto , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica , Mapeamento de Interação de Proteínas , RNA Fúngico/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Ribonuclease P/metabolismo , Especificidade da Espécie , Relação Estrutura-Atividade , Especificidade por Substrato
5.
RNA ; 27(11): 1330-1338, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34315814

RESUMO

During protein synthesis on ribosome, tRNA recognizes its cognate codon of mRNA through base-pairing with the anticodon. The 5'-end nucleotide of the anticodon is capable of wobble base-pairing, offering a molecular basis for codon degeneracy. The wobble nucleotide is often targeted for post-transcriptional modification, which affects the specificity and fidelity of the decoding process. Flipping-out of a wobble nucleotide in the anticodon loop has been proposed to be necessary for modifying enzymes to access the target nucleotide, which has been captured in selective structures of protein-bound complexes. Meanwhile, all other structures of free or ribosome-bound tRNA display anticodon bases arranged in stacked conformation. We report the X-ray crystal structure of unbound tRNAVal1 to a 2.04 Å resolution showing two different conformational states of wobble uridine in the anticodon loop, one stacked on the neighboring base and the other swiveled out toward solvent. In addition, the structure reveals a rare magnesium ion coordination to the nitrogen atom of a nucleobase, which has been sampled very rarely among known structures of nucleic acids.


Assuntos
Anticódon/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , RNA de Transferência de Valina/metabolismo , Ribossomos/metabolismo , Anticódon/química , Anticódon/genética , Pareamento de Bases , Escherichia coli/genética , Escherichia coli/metabolismo , Metais/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , RNA Mensageiro/química , RNA Mensageiro/genética , RNA de Transferência de Valina/química , RNA de Transferência de Valina/genética , Ribossomos/genética
6.
PLoS Comput Biol ; 17(6): e1009068, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34125830

RESUMO

Specific interaction between the start codon, 5'-AUG-3', and the anticodon, 5'-CAU-3', ensures accurate initiation of translation. Recent studies show that several near-cognate start codons (e.g. GUG and CUG) can play a role in initiating translation in eukaryotes. However, the mechanism allowing initiation through mismatched base-pairs at the ribosomal decoding site is still unclear at an atomic level. In this work, we propose an extended simulation-based method to evaluate free energy profiles, through computing the distance between each base-pair of the triplet interactions involved in recognition of start codons in eukaryotic translation pre-initiation complex. Our method provides not only the free energy penalty for mismatched start codons relative to the AUG start codon, but also the preferred pathways of transitions between bound and unbound states, which has not been described by previous studies. To verify the method, the binding dynamics of cognate (AUG) and near-cognate start codons (CUG and GUG) were simulated. Evaluated free energy profiles agree with experimentally observed changes in initiation frequencies from respective codons. This work proposes for the first time how a G:U mismatch at the first position of codon (GUG)-anticodon base-pairs destabilizes the accommodation in the initiating eukaryotic ribosome and how initiation at a CUG codon is nearly as strong as, or sometimes stronger than, that at a GUG codon. Our method is expected to be applied to study the affinity changes for various mismatched base-pairs.


Assuntos
Códon de Iniciação/genética , Códon de Iniciação/metabolismo , Iniciação Traducional da Cadeia Peptídica , Anticódon/química , Anticódon/genética , Anticódon/metabolismo , Pareamento de Bases , Sequência de Bases , Códon de Iniciação/química , Biologia Computacional , Células Eucarióticas/metabolismo , Modelos Biológicos , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Termodinâmica
7.
J Mol Biol ; 433(15): 167073, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34058151

RESUMO

Biogenic polyamines are natural aliphatic polycations formed from amino acids by biochemical pathways that are highly conserved from bacteria to humans. Their cellular concentrations are carefully regulated and dysregulation causes severe cell growth defects. Polyamines have high affinity for nucleic acids and are known to interact with mRNA, tRNA and rRNA to stimulate the translational machinery, but the exact molecular mechanism(s) for this stimulus is still unknown. Here we exploit that Escherichia coli is viable in the absence of polyamines, including the universally conserved putrescine and spermidine. Using global macromolecule labelling approaches we find that ribosome efficiency is reduced by 50-70% in the absence of polyamines and this reduction is caused by slow translation elongation speed. The low efficiency causes rRNA and multiple tRNA species to be overproduced in the absence of polyamines, suggesting an impact on the feedback regulation of stable RNA transcription. Importantly, we find that polyamine deficiency affects both tRNA levels and tRNA modification patterns. Specifically, a large fraction of tRNAhis, tRNAtyr and tRNAasn lack the queuosine modification in the anticodon "wobble" base, which can be reversed by addition of polyamines to the growth medium. In conclusion, we demonstrate that polyamines are needed for modification of specific tRNA, possibly by facilitating the interaction with modification enzymes.


Assuntos
Anticódon/química , Escherichia coli/genética , Poliaminas/química , Escherichia coli/metabolismo , Retroalimentação Fisiológica , Conformação de Ácido Nucleico , Biossíntese de Proteínas , RNA Bacteriano/química , RNA Ribossômico/química , RNA de Transferência/química
8.
RNA ; 27(1): 27-39, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33008837

RESUMO

Viruses commonly use specifically folded RNA elements that interact with both host and viral proteins to perform functions important for diverse viral processes. Examples are found at the 3' termini of certain positive-sense ssRNA virus genomes where they partially mimic tRNAs, including being aminoacylated by host cell enzymes. Valine-accepting tRNA-like structures (TLSVal) are an example that share some clear homology with canonical tRNAs but have several important structural differences. Although many examples of TLSVal have been identified, we lacked a full understanding of their structural diversity and phylogenetic distribution. To address this, we undertook an in-depth bioinformatic and biochemical investigation of these RNAs, guided by recent high-resolution structures of a TLSVal We cataloged many new examples in plant-infecting viruses but also in unrelated insect-specific viruses. Using biochemical and structural approaches, we verified the secondary structure of representative TLSVal substrates and tested their ability to be valylated, confirming previous observations of structural heterogeneity within this class. In a few cases, large stem-loop structures are inserted within variable regions located in an area of the TLS distal to known host cell factor binding sites. In addition, we identified one virus whose TLS has switched its anticodon away from valine, causing a loss of valylation activity; the implications of this remain unclear. These results refine our understanding of the structural and functional mechanistic details of tRNA mimicry and how this may be used in viral infection.


Assuntos
Variação Genética , Vírus de Insetos/genética , Filogenia , Vírus de Plantas/genética , RNA de Transferência de Valina/química , RNA Viral/química , Anticódon/química , Anticódon/metabolismo , Sequência de Bases , Sítios de Ligação , Biologia Computacional , Vírus de Insetos/classificação , Vírus de Insetos/metabolismo , Modelos Moleculares , Mimetismo Molecular , Vírus de Plantas/classificação , Vírus de Plantas/metabolismo , Dobramento de RNA , RNA de Transferência de Valina/genética , RNA de Transferência de Valina/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Homologia de Sequência do Ácido Nucleico , Valina/metabolismo
9.
RNA ; 27(1): 40-53, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33008838

RESUMO

A recent crystal structure of a ribosome complex undergoing partial translocation in the absence of elongation factor EF-G showed disruption of codon-anticodon pairing and slippage of the reading frame by -1, directly implicating EF-G in preservation of the translational reading frame. Among mutations identified in a random screen for dominant-lethal mutations of EF-G were a cluster of six that map to the tip of domain IV, which has been shown to contact the codon-anticodon duplex in trapped translocation intermediates. In vitro synthesis of a full-length protein using these mutant EF-Gs revealed dramatically increased -1 frameshifting, providing new evidence for a role for domain IV of EF-G in maintaining the reading frame. These mutations also caused decreased rates of mRNA translocation and rotational movement of the head and body domains of the 30S ribosomal subunit during translocation. Our results are in general agreement with recent findings from Rodnina and coworkers based on in vitro translation of an oligopeptide using EF-Gs containing mutations at two positions in domain IV, who found an inverse correlation between the degree of frameshifting and rates of translocation. Four of our six mutations are substitutions at positions that interact with the translocating tRNA, in each case contacting the RNA backbone of the anticodon loop. We suggest that EF-G helps to preserve the translational reading frame by preventing uncoupled movement of the tRNA through these contacts; a further possibility is that these interactions may stabilize a conformation of the anticodon that favors base-pairing with its codon.


Assuntos
Escherichia coli/genética , Mudança da Fase de Leitura do Gene Ribossômico , Mutação , Elongação Traducional da Cadeia Peptídica , Fator G para Elongação de Peptídeos/genética , Ribossomos/genética , Anticódon/química , Anticódon/metabolismo , Sítios de Ligação , Códon/química , Códon/metabolismo , Escherichia coli/metabolismo , Histidina/genética , Histidina/metabolismo , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Fator G para Elongação de Peptídeos/química , Fator G para Elongação de Peptídeos/metabolismo , Ligação Proteica , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , RNA Mensageiro , RNA de Transferência , Fases de Leitura , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ribossomos/metabolismo
10.
RNA Biol ; 18(8): 1193-1205, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33211605

RESUMO

Colicin D is a plasmid-encoded bacteriocin that specifically cleaves tRNAArg of sensitive Escherichia coli cells. E. coli has four isoaccepting tRNAArgs; the cleavage occurs at the 3' end of anticodon-loop, leading to translation impairment in the sensitive cells. tRNAs form a common L-shaped structure and have many conserved nucleotides that limit tRNA identity elements. How colicin D selects tRNAArgs from the tRNA pool of sensitive E. coli cells is therefore intriguing. Here, we reveal the recognition mechanism of colicin D via biochemical analyses as well as structural modelling. Colicin D recognizes tRNAArgICG, the most abundant species of E. coli tRNAArgs, at its anticodon-loop and D-arm, and selects it as the most preferred substrate by distinguishing its anticodon-loop sequence from that of others. It has been assumed that translation impairment is caused by a decrease in intact tRNA molecules due to cleavage. However, we found that intracellular levels of intact tRNAArgICG do not determine the viability of sensitive cells after such cleavage; rather, an accumulation of cleaved ones does. Cleaved tRNAArgICG dominant-negatively impairs translation in vitro. Moreover, we revealed that EF-Tu, which is required for the delivery of tRNAs, does not compete with colicin D for binding tRNAArgICG, which is consistent with our structural model. Finally, elevation of cleaved tRNAArgICG level decreases the viability of sensitive cells. These results suggest that cleaved tRNAArgICG transiently occupies ribosomal A-site in an EF-Tu-dependent manner, leading to translation impairment. The strategy should also be applicable to other tRNA-targeting RNases, as they, too, recognize anticodon-loops.Abbreviations: mnm5U: 5-methylaminomethyluridine; mcm5s2U: 5-methoxycarbonylmethyl-2-thiouridine.


Assuntos
Bacteriocinas/química , Colicinas/química , Escherichia coli/metabolismo , Biossíntese de Proteínas , RNA Bacteriano/química , RNA de Transferência de Arginina/química , Ribossomos/metabolismo , Anticódon/química , Anticódon/genética , Anticódon/metabolismo , Bacteriocinas/genética , Bacteriocinas/metabolismo , Pareamento de Bases , Sítios de Ligação , Colicinas/genética , Colicinas/metabolismo , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Simulação de Acoplamento Molecular , Conformação de Ácido Nucleico , Fator Tu de Elongação de Peptídeos/genética , Fator Tu de Elongação de Peptídeos/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA de Transferência de Arginina/genética , RNA de Transferência de Arginina/metabolismo , Ribossomos/genética , Especificidade por Substrato , Tiouridina/análogos & derivados , Tiouridina/metabolismo , Uridina/análogos & derivados , Uridina/metabolismo
11.
RNA ; 27(2): 202-220, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33214333

RESUMO

Transfer RNA (tRNA) is the most diversely modified RNA. Although the strictly conserved purine position 37 in the anticodon stem-loop undergoes modifications that are phylogenetically distributed, we do not yet fully understand the roles of these modifications. Therefore, molecular dynamics simulations are used to provide molecular-level details for how such modifications impact the structure and function of tRNA. A focus is placed on three hypermodified base families that include the parent i6A, t6A, and yW modifications, as well as derivatives. Our data reveal that the hypermodifications exhibit significant conformational flexibility in tRNA, which can be modulated by additional chemical functionalization. Although the overall structure of the tRNA anticodon stem remains intact regardless of the modification considered, the anticodon loop must rearrange to accommodate the bulky, dynamic hypermodifications, which includes changes in the nucleotide glycosidic and backbone conformations, and enhanced or completely new nucleobase-nucleobase interactions compared to unmodified tRNA or tRNA containing smaller (m1G) modifications at the 37th position. Importantly, the extent of the changes in the anticodon loop is influenced by the addition of small functional groups to parent modifications, implying each substituent can further fine-tune tRNA structure. Although the dominant conformation of the ASL is achieved in different ways for each modification, the molecular features of all modified tRNA drive the ASL domain to adopt the functional open-loop conformation. Importantly, the impact of the hypermodifications is preserved in different sequence contexts. These findings highlight the likely role of regulating mRNA structure and translation.


Assuntos
Adenosina/análogos & derivados , Anticódon/química , Escherichia coli/genética , Processamento Pós-Transcricional do RNA , RNA de Transferência de Lisina/química , RNA de Transferência de Fenilalanina/química , Adenosina/metabolismo , Anticódon/genética , Anticódon/metabolismo , Pareamento de Bases , Sequência de Bases , Escherichia coli/metabolismo , Isopenteniladenosina/química , Isopenteniladenosina/metabolismo , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Nucleosídeos/química , Nucleosídeos/metabolismo , RNA de Transferência de Lisina/genética , RNA de Transferência de Lisina/metabolismo , RNA de Transferência de Fenilalanina/genética , RNA de Transferência de Fenilalanina/metabolismo
12.
Nucleic Acids Res ; 48(21): 12004-12015, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33196821

RESUMO

Because ambient temperature affects biochemical reactions, organisms living in extreme temperature conditions adapt protein composition and structure to maintain biochemical functions. While it is not feasible to experimentally determine optimal growth temperature (OGT) for every known microbial species, organisms adapted to different temperatures have measurable differences in DNA, RNA and protein composition that allow OGT prediction from genome sequence alone. In this study, we built a 'tRNA thermometer' model using tRNA sequence to predict OGT. We used sequences from 100 archaea and 683 bacteria species as input to train two Convolutional Neural Network models. The first pairs individual tRNA sequences from different species to predict which comes from a more thermophilic organism, with accuracy ranging from 0.538 to 0.992. The second uses the complete set of tRNAs in a species to predict optimal growth temperature, achieving a maximum ${r^2}$ of 0.86; comparable with other prediction accuracies in the literature despite a significant reduction in the quantity of input data. This model improves on previous OGT prediction models by providing a model with minimum input data requirements, removing laborious feature extraction and data preprocessing steps and widening the scope of valid downstream analyses.


Assuntos
Adaptação Fisiológica/genética , Archaea/genética , Bactérias/genética , Genoma Arqueal , Genoma Bacteriano , RNA de Transferência/química , Anticódon/química , Anticódon/metabolismo , Archaea/classificação , Archaea/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Pareamento de Bases , Sequência de Bases , Simulação por Computador , Modelos Genéticos , Redes Neurais de Computação , Conformação de Ácido Nucleico , Filogenia , Estabilidade de RNA , RNA de Transferência/genética , RNA de Transferência/metabolismo , Temperatura , Termômetros
13.
Nucleic Acids Res ; 48(14): 7899-7913, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32609816

RESUMO

In the Elongator-dependent modification pathway, chemical modifications are introduced at the wobble uridines at position 34 in transfer RNAs (tRNAs), which serve to optimize codon translation rates. Here, we show that this three-step modification pathway exists in Dictyostelium discoideum, model of the evolutionary superfamily Amoebozoa. Not only are previously established modifications observable by mass spectrometry in strains with the most conserved genes of each step deleted, but also additional modifications are detected, indicating a certain plasticity of the pathway in the amoeba. Unlike described for yeast, D. discoideum allows for an unconditional deletion of the single tQCUG gene, as long as the Elongator-dependent modification pathway is intact. In gene deletion strains of the modification pathway, protein amounts are significantly reduced as shown by flow cytometry and Western blotting, using strains expressing different glutamine leader constructs fused to GFP. Most dramatic are these effects, when the tQCUG gene is deleted, or Elp3, the catalytic component of the Elongator complex is missing. In addition, Elp3 is the most strongly conserved protein of the modification pathway, as our phylogenetic analysis reveals. The implications of this observation are discussed with respect to the evolutionary age of the components acting in the Elongator-dependent modification pathway.


Assuntos
Dictyostelium/genética , RNA de Transferência/metabolismo , Anticódon/química , Anticódon/metabolismo , Códon , Dictyostelium/metabolismo , Deleção de Genes , Glutamina , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Mutação , Nucleosídeos/química , Filogenia , Biossíntese de Proteínas , Proteínas de Protozoários/classificação , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Uridina/metabolismo
14.
Proc Natl Acad Sci U S A ; 117(28): 16333-16338, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32601241

RESUMO

Bacterial transfer RNAs (tRNAs) contain evolutionarily conserved sequences and modifications that ensure uniform binding to the ribosome and optimal translational accuracy despite differences in their aminoacyl attachments and anticodon nucleotide sequences. In the tRNA anticodon stem-loop, the anticodon sequence is correlated with a base pair in the anticodon loop (nucleotides 32 and 38) to tune the binding of each tRNA to the decoding center in the ribosome. Disruption of this correlation renders the ribosome unable to distinguish correct from incorrect tRNAs. The molecular basis for how these two tRNA features combine to ensure accurate decoding is unclear. Here, we solved structures of the bacterial ribosome containing either wild-type [Formula: see text] or [Formula: see text] containing a reversed 32-38 pair on cognate and near-cognate codons. Structures of wild-type [Formula: see text] bound to the ribosome reveal 23S ribosomal RNA (rRNA) nucleotide A1913 positional changes that are dependent on whether the codon-anticodon interaction is cognate or near cognate. Further, the 32-38 pair is destabilized in the context of a near-cognate codon-anticodon pair. Reversal of the pairing in [Formula: see text] ablates A1913 movement regardless of whether the interaction is cognate or near cognate. These results demonstrate that disrupting 32-38 and anticodon sequences alters interactions with the ribosome that directly contribute to misreading.


Assuntos
Biossíntese de Proteínas/genética , RNA de Transferência/química , RNA de Transferência/genética , Anticódon/química , Anticódon/genética , Anticódon/metabolismo , Pareamento de Bases , Códon/genética , Códon/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Mutação , Conformação de Ácido Nucleico , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Ribossômico 23S/química , RNA Ribossômico 23S/genética , RNA Ribossômico 23S/metabolismo , RNA de Transferência/metabolismo , Ribossomos/química , Ribossomos/metabolismo , Thermus thermophilus/genética , Thermus thermophilus/metabolismo
15.
RNA ; 26(9): 1291-1298, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32439717

RESUMO

Queuosine (Q) is a conserved tRNA modification in bacteria and eukaryotes. Eukaryotic Q-tRNA modification occurs through replacing the guanine base with the scavenged metabolite queuine at the wobble position of tRNAs with G34U35N36 anticodon (Tyr, His, Asn, Asp) by the QTRT1/QTRT2 heterodimeric enzyme encoded in the genome. In humans, Q-modification in tRNATyr and tRNAAsp are further glycosylated with galactose and mannose, respectively. Although galactosyl-Q (galQ) and mannosyl-Q (manQ) can be measured by LC/MS approaches, the difficulty of detecting and quantifying these modifications with low sample inputs has hindered their biological investigations. Here we describe a simple acid denaturing gel and nonradioactive northern blot method to detect and quantify the fraction of galQ/manQ-modified tRNA using just microgram amounts of total RNA. Our method relies on the secondary amine group of galQ/manQ becoming positively charged to slow their migration in acid denaturing gels commonly used for tRNA charging studies. We apply this method to determine the Q and galQ/manQ modification kinetics in three human cells lines. For Q-modification, tRNAAsp is modified the fastest, followed by tRNAHis, tRNATyr, and tRNAAsn Compared to Q-modification, glycosylation occurs at a much slower rate for tRNAAsp, but at a similar rate for tRNATyr Our method enables easy access to study the function of these enigmatic tRNA modifications.


Assuntos
Géis/química , Nucleosídeo Q/química , RNA de Transferência/química , RNA de Transferência/genética , Anticódon/química , Anticódon/genética , Linhagem Celular Tumoral , Glicosilação , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , Nucleosídeo Q/genética , Aminoacilação de RNA de Transferência/genética
16.
Nucleic Acids Res ; 48(11): 6170-6183, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32266934

RESUMO

Translation fidelity relies essentially on the ability of ribosomes to accurately recognize triplet interactions between codons on mRNAs and anticodons of tRNAs. To determine the codon-anticodon pairs that are efficiently accepted by the eukaryotic ribosome, we took advantage of the IRES from the intergenic region (IGR) of the Cricket Paralysis Virus. It contains an essential pseudoknot PKI that structurally and functionally mimics a codon-anticodon helix. We screened the entire set of 4096 possible combinations using ultrahigh-throughput screenings combining coupled transcription/translation and droplet-based microfluidics. Only 97 combinations are efficiently accepted and accommodated for translocation and further elongation: 38 combinations involve cognate recognition with Watson-Crick pairs and 59 involve near-cognate recognition pairs with at least one mismatch. More than half of the near-cognate combinations (36/59) contain a G at the first position of the anticodon (numbered 34 of tRNA). G34-containing tRNAs decoding 4-codon boxes are almost absent from eukaryotic genomes in contrast to bacterial genomes. We reconstructed these missing tRNAs and could demonstrate that these tRNAs are toxic to cells due to their miscoding capacity in eukaryotic translation systems. We also show that the nature of the purine at position 34 is correlated with the nucleotides present at 32 and 38.


Assuntos
Códon/genética , Purinas/química , Purinas/metabolismo , RNA de Transferência/química , RNA de Transferência/genética , Anticódon/química , Anticódon/genética , Anticódon/metabolismo , Pareamento Incorreto de Bases , Pareamento de Bases , Sequência de Bases , Códon/química , Códon/metabolismo , Células Eucarióticas/metabolismo , Biblioteca Gênica , Guanina/química , Guanina/metabolismo , Sítios Internos de Entrada Ribossomal/genética , Nucleotídeos/química , Nucleotídeos/metabolismo , Elongação Traducional da Cadeia Peptídica , RNA de Transferência/metabolismo , Ribossomos/metabolismo
17.
FEBS J ; 287(17): 3814-3826, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32115907

RESUMO

Various pathogenic variants in both mitochondrial tRNAPhe and Phenylalanyl-tRNA synthetase mitochondrial protein coding gene (FARS2) gene encoding for the human mitochondrial PheRS have been identified and associated with neurological and/or muscle-related pathologies. An important Guanine-34 (G34)A anticodon mutation associated with myoclonic epilepsy with ragged red fibers (MERRF) syndrome has been reported in hmit-tRNAPhe . The majority of G34 contacts in available aaRSs-tRNAs complexes specifically use that base as an important tRNA identity element. The network of intermolecular interactions providing its specific recognition also largely conserved. However, their conservation depends also on the invariance of the residues in the anticodon binding domain (ABD) of human mitochondrial Phenylalanyl-tRNA synthetase (hmit-PheRS). A defect in recognition of the anticodon of tRNAPhe may happen not only because of G34A mutation, but also due to mutations in the ABD. Indeed, a pathogenic mutation in FARS2 has been recently reported in a 9-year-old female patient harboring a p.Asp364Gly mutation. Asp364 is hydrogen bonded (HB) to G34 in WT hmit-PheRS. Thus, there are two pathogenic variants disrupting HB between G34 and Asp364: one is associated with G34A mutation, and the other with Asp364Gly mutation. We have measured the rates of tRNAPhe aminoacylation catalyzed by WT hmit-PheRS and mutant enzymes. These data ranked the residues making a HB with G34 according to their contribution to activity and the signal transduction pathway in the hmit-PheRS-tRNAPhe complex. Furthermore, we carried out extensive MD simulations to reveal the interdomain contact topology on the dynamic trajectories of the complex, and gaining insight into the structural and dynamic integrity effects of hmit-PheRS complexed with tRNAPhe . DATABASE: Structural data are available in PDB database under the accession number(s): 3CMQ, 3TUP, 5MGH, 5MGV.


Assuntos
Pleiotropia Genética , Proteínas Mitocondriais/química , Paraparesia Espástica/genética , Fenilalanina-tRNA Ligase/química , RNA de Transferência de Fenilalanina/química , Substituição de Aminoácidos , Anticódon/química , Anticódon/metabolismo , Ácido Aspártico/química , Criança , Consanguinidade , DNA Mitocondrial/genética , Progressão da Doença , Feminino , Guanina/química , Humanos , Ligação de Hidrogênio , Síndrome MERRF/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Movimento (Física) , Mutação de Sentido Incorreto , Fenótipo , Fenilalanina-tRNA Ligase/genética , Fenilalanina-tRNA Ligase/metabolismo , Mutação Puntual , Conformação Proteica , Domínios Proteicos
18.
Biosystems ; 191-192: 104116, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32081715

RESUMO

Deaminations C->T and A->G are frequent mutations producing nucleotide content gradients across genomes proportional to singlestrandedness during replication/transcription. Hence, within single codons, deamination risks increase from first to third codon positions, while second codon positions are functionally most crucial. Here genetic codes are analyzed assuming that after anticodons protected codons from deaminations, first and second codon positions swapped (N2N1N3->N1N2N3), with lowest deamination risks for N2 in presumed primitive N2N1N3 codons. N2N1N3, not standard N1N2N3, codon structure minimizes deaminations inversely proportionally to cognate amino acid hydrophobicity and parallel betasheet conformational preference. For N1N2N3, deamination minimization increases with genetic code integration order of cognate amino acids: during the presumed N2N1N3->N1N2N3 codon structure transition, protein synthesis combined direct codon-amino acid interactions for late amino acids and tRNA-based translation for early amino acids. Hence N2N1N3 codons would correspond to tRNA-free translation by spontaneous codon-amino acid affinities, and tRNA-mediated translation presumably caused N2N1N3->N1N2N3 swaps. Results show that rational, not arbitrary rules link codon and amino acid structures. Some analyses detect mitochondrial RNAs and peptides in public data corresponding to systematic position swaps, suggesting occasional swapping polymerase activity.


Assuntos
Aminoácidos/genética , Anticódon/genética , Códon/genética , Código Genético/genética , Biossíntese de Proteínas/genética , Sequência de Aminoácidos , Aminoácidos/química , Anticódon/química , Sequência de Bases , Códon/química , Desaminação , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Genéticos , Nucleotídeos/genética , Conformação Proteica em Folha beta , RNA de Transferência/química , RNA de Transferência/genética , Homologia de Sequência do Ácido Nucleico
19.
RNA ; 26(3): 278-289, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31848215

RESUMO

Ubiquitous across all domains of life, tRNAs constitute an essential component of cellular physiology, carry out an indispensable role in protein synthesis, and have been historically the subject of a wide range of biochemical and biophysical studies as prototypical folded RNA molecules. Although conformational flexibility is a well-established characteristic of tRNA structure, it is typically regarded as an adaptive property exhibited in response to an inducing event, such as the binding of a tRNA synthetase or the accommodation of an aminoacyl-tRNA into the ribosome. In this study, we present crystallographic data of a tRNA molecule to expand on this paradigm by showing that structural flexibility and plasticity are intrinsic properties of tRNAs, apparent even in the absence of other factors. Based on two closely related conformations observed within the same crystal, we posit that unbound tRNAs by themselves are flexible and dynamic molecules. Furthermore, we demonstrate that the formation of the T-loop conformation by the tRNA TΨC stem-loop, a well-characterized and classic RNA structural motif, is possible even in the absence of important interactions observed in fully folded tRNAs.


Assuntos
Conformação de Ácido Nucleico , Aminoacil-RNA de Transferência/ultraestrutura , RNA de Transferência/ultraestrutura , Anticódon/química , Anticódon/genética , Cristalografia , Escherichia coli/química , Escherichia coli/ultraestrutura , Motivos de Nucleotídeos/genética , RNA de Transferência/química , Aminoacil-RNA de Transferência/química , Ribossomos/genética , Ribossomos/ultraestrutura
20.
ACS Synth Biol ; 9(1): 43-52, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31774997

RESUMO

Expanding the chemical diversity of aptamers remains an important thrust in the field in order to increase their functional potential. Previously, our group developed LOOPER, which enables the incorporation of up to 16 unique modifications throughout a ssDNA sequence, and applied it to the in vitro evolution of thrombin binders. As LOOPER-derived highly modified nucleic acids polymers are governed by two interrelated evolutionary variables, namely, functional modifications and sequence, the evolution of this polymer contrasts with that of canonical DNA. Herein we provide in-depth analysis of the evolution, including structure-activity relationships, mapping of evolutionary pressures on the library, and analysis of plausible evolutionary pathways that resulted in the first LOOPER-derived aptamer, TBL1. A detailed picture of how TBL1 interacts with thrombin and how it may mimic known peptide binders of thrombin is also proposed. Structural modeling and folding studies afford insights into how the aptamer displays critical modifications and also how modifications enhance the structural stability of the aptamer. A discussion of benefits and potential limitations of LOOPER during in vitro evolution is provided, which will serve to guide future evolutions of this highly modified class of aptamers.


Assuntos
Anticódon/química , Aptâmeros de Nucleotídeos/química , DNA Ligases/química , DNA de Cadeia Simples/química , Evolução Molecular Direcionada/métodos , Trombina/química , Sítios de Ligação , Códon/química , Epitopos/química , Biblioteca Gênica , Humanos , Simulação de Dinâmica Molecular , Ácidos Nucleicos/química , Polimerização , Polímeros , Técnica de Seleção de Aptâmeros/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...